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Faulted regions associated with geothermal areas are assumed to be composed of rock 
which has been heavily fractured within the fault zone by continuous tectonic activity. 
The fractured zone is modelled as a vertical, slender, two-dimensional channel of 
saturated porous material with impermeable walls on which the temperature increases 
linearly with depth. The development of an isothermal slug flow entering the fault 
at a large depth is examined. An entry solution and the subsequent approach to the 
fully developed configuration are obtained for large Rayleigh number flow. The 
former is characterized by growing thermal boundary layers adjacent to the walls and 
a slightly accelerated isothermal core flow. Further downstream the development is 
described by a parabolic system. It is shown that a class of fully developed solutions 
is not spatially stable. 

1. Introduction 
A study of the fluid dynamics within a geothermal system should consider a 

physically viable conceptual model based on geophysical and geological evidence and 
interpretation. The fluid mechanician can then translate this model into governing 
equations and boundary conditions for which solutions can be developed. 

In this paper a study is made of the convection of liquid in a particular type of 
hydrothermal system which is found fairly frequently within the first few kilometres 
of the earth’s crust. In order to provide a sound physical foundation for the analysis 
to follow, this introduction contains a discussion of the pertinent geological and 
geophysical considerations. This information is then used to construct a mathematical 
system capable of describing convection and heat transfer in a conceptual model of a 
vertical fault zone. The analysis is carried out in terms of liquid flowing in a slender, 
vertical, two-dimensional channel filled with a porous medium. The channel is charged 
with heated liquid from below which rises owing to buoyant effects. The nature of the 
developing flow pattern and the heat-transfer distribution is elucidated by means of 
a high Rayleigh number asymptotic analysis which is an adaptation of Van Dyke’s 
(1970) ideas. 

1.1. The physical environment 

The heat- and mass-transfer processes in a liquid-dominated geothermal anomaly 
depend upon fhe detailed geological structure of the system and the nature of the 
hydrodynamic convection process occurring within that physical environment. When 
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the geological structure is relatively uniform in nature, the hydrodynamical patterns 
themselves will tend to determine the distribution of physical properties (temperature, 
pressure, velocity) characterizing the system. Conversely, the upwelling of hot liquid 
in anomalies closely associated with localized geological structures like faulted regions 
and narrowly defined aquifers appears to be strongly influenced by the detailed 
structural features (Ellis 1975). 

Recent studies of liquid-dominated systems suggest that many geothermal anomalies 
are intimately associated with specific patterns of faulting. In  the Wairakei field it 
appears that heated water rises from a large depth along the active Waiora and 
Wairakei faults to charge the Waiora aquifer (Grindley 1965). The production of 
geothermal fluids from bore holes in the Broadlands region is most prolific where there 
are faults that transect the rhyolite dome that caps the Waiora formation (Grindley 
1970). Prior to production at Cerro Prieto, vigorous hot springs existed along a linear 
surface feature (Mercado 1969). Rinehart & Ross (1964) and Bailey, Dalrymple & 
Lanphere (1976) have noted that most of the active hot springs and fumeroles in Long 
Valley, California occur along active north-to-northwest tending faults. It has also 
been suggested by Bailey et al. (1976) that the dominant controlling structures of the 
hydrothermal activity are the deep caldera ring fractures. In  the Imperial Valley, 
California there are several geothermal anomalies which are close to or intersected by 
active faults (Elders, Rex & Meidav 1972). Swanberg (1974, 1976), Black (1975) and 
Bailey (1977) have concluded that the East Mesa anomaly in the Imperial Valley exists 
because heated fluid can rise from a large depth along faults which are known from 
remote sensing and microearthquake monitoring (Combs & Hadley 1977). Geothermal 
activity also appears to be associated with the Imperial fault at  the Alamo anomaly 
in the Imperial Valley (Swanberg 1974). 

Since there is a reasonable body of circumstantial evidence suggesting that faulted 
regions are frequently associated with geothermal systems, it is of value to ask what 
role the fault plays in determining the hydrological and thermodynamic state of the 
area. The answer must be somewhat speculative because the available bore-hole data 
from geothermal fields is limited and because little is known about the detailed structure 
of fault regions, particularly at larger depths (Wu, Blatter & Robertson 1975). Since 
the water in geothermal systems appears to be largely of meteoric origin (White 1961; 
Ellis 1975) it may be hypothesized that surface water gradually percolates down into 
permeable sediments and/or fractured volcanic rock. The area of downflow is thought 
to be considerably larger than the thermal anomaly itself. At depth the water is close 
to the local heat source. It is buoyant relative to the cool surrounding recharge water. 
If a faulted region is present, then the heated water can rise in this region of relatively 
large vertical permeability, convecting energy towards the surface. When the fault 
intersects horizontal aquifers of relatively large permeability the rising hot water will 
charge the aquifer. 

The fault itself is hypothesized to be a region of heavily fractured material of finite 
width bounded by two vertical planes. The vertical extent of the fault and its second 
horizontal dimension are large compared with its width. Often the fault has been 
active for extensive periods because the region exhibits volcanism and/or tectonic 
events (Elders et al. 1972). The continual microearthquake activity frequently 
associated with fault-controlled geothermal systems (Combs & Hadley 1977 ; Ward 
1972) suggests that there are mechanical processes available for fracturing of the rock. 
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This is necessary to counteract the mineral deposition associated with a rising, cooling 
column of saline geothermal fluid, which tends to close up the system by reducing the 
permeability (Ellis 1975). The epicentres of the microearthquakes associated with 
the East Mesa anomaly are frequently deeper than the presumed local basement 
depth of the Imperial Valley. Thus one may speculate that the fault extends through 
the sediments of the graben into the basement rock of magmatic origin beneath. 

The near-surface distribution of heat transfer at  a geothermal anomaly associated 
with a fault zone (e.g. Combs 1971) is related in part to the nature of the convective 
flow in that fault. Hence it appears useful to develop models of the fluid flow in a 
faulted region. One could proceed by considering flow in a complex pattern of discrete 
intersecting fractures. However, given the lack of information about the fault-zone 
structure, in particular fracture distribution, this approach does not appear to be 
particularly meaningful. Instead the problem is considered in terms of flow in satura- 
ted porous media. In this case the details of the structure appear in the averaged 
properties of permeability and porosity. The values used for these quantities are 
those associated with the fracture system, in which most of the fluid flow is pre- 
sumed to occur, rather than with the intrinsic (intergranular) properties of the rock 
itself. 

2. Modelling 
Imagine a vertical fault zone which begins at the surface and extends through a 

length L' of sedimentary material and a length 1' of subsequerh basement rock as 
shown in figure 1. The transverse width 2yi < L' represents the region of extensive 
fracture distribution associated with the faulting process. Within the sedimentary 
section the effective permeability of the fault zone is assumed to be large compared 
with that of the surrounding unfractured rock. The relatively brittle basement-rock 
complex of depth 1' is assumed to be fractured everywhere although most intensively 
in the fault zone. Below this depth the fracture system is considered to be closed owing 
to creep deformation of the hot rock system associated with a localized heat source. 
Water, which has percolated down into the fractured basement complex far from the 
fault, flows laterally towards the fault as it is heated. The driving mechanism is the 
hydrostatic pressure imbalance between the peripheral cold recharge region and 
the hot upflow column in the fault (Donaldson 1970). Since the vertical fracture per- 
meability of the fault is large compared with the general permeability in the neigh- 
bouring basement section, the horizontal pressure gradient drives hot liquid into the 
bottom portion of the fault. Subsequently the fluid moves upwards, cooling as it 
approaches the surface. 

The heat and mass transfer within the fault zone will be modelled by considering the 
flow in a saturated porous medium contained in the two-dimensional channel shown 
in figure 2 (a) .  When - L' < z' < 0, the vertical walls are considered impermeable to 
emphasize the contrast in permeability between the fault and its surroundings.? In 
the region - (L' + 1') < z' < - L' it is assumed that mass can cross the walls with a 
velocity &(z) which vanishes at  z' = - L' and z' -- - (L' + 1 ' ) .  This distribution is 
chosen to provide a smooth transition between the impermeable wall above 2' = - L' 

t A future paper will consider the problem of aquifer charging. 
26-2 
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I I '  Basement rock 

Surface 
water flow 

Basement rock 

FIGURE 1.  A conceptual view of a vertical fault zone extending through 
sediments of thickness L' and basement rock of magmatic origin. 

and below z' = - (L' + i?). At z' = - (L' + Z') the boundary is considered to be im- 
permeable because of the closed fracture system beneath that depth. Fluid is assumed 
to leave the channel freely a t  z' = 0. There is a linear temperature increase with depth 
along the vertical boundary from TA to Ti  for - L' < z' < 0 and a uniform temperature 
TI below (in - (L' + Z') < z' < - L'). While the latter condition is not entirely correct 
from the observational viewpoint, it permits one to consider an isothermal fault 
charging process followed by a thermally active problem involving the cooling of a 
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FIQURE 2. (a) Dimensional and ( b )  non-dimensional view of the vertical 
slot filled with a saturated porous medium. 

rising column of relatively hot fluid. The precise form of the boundary conditions 
permits mathematical simplifications which lead to analytical solution development. 

In order to simplify the analysis further, it is assumed that the decrease in the liquid 
viscosity (p')  with depth (associated with increasing temperature) is matched by an 
analogous decrease in the permeability (k') due to compaction. As a result the ratio 
,u''/k' is a constant. 

The non-dimensional governing equations can be written in the form 
vv + w, = 0' 

R [wT, + wT,] = Tvv + qB. 

( 1 )  

(2 a, b )  

(3) 

V = -pv , w = - -p2+(T--  q/7, 

The volumetric velocity components v and w, the pressure p ,  the temperature T ,  the 
lengths y and z ,  the overheat parameter 7 and the Rayleigh number R are defined with 
respect to dimensional (primed) quantities by 

p' - phg'z' T' , p k  = Pig'L'a'AT', T = - P =  Pk Th' 
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g'ki a 'L ' AT' R =  Pr, . 
Vh2 

Here g t  is the acceleration due to gravity, k' is the permeability, a' i p  the constant 
thermal expansion coefficient, A T  = Ti - TA, v' is the kinematic viscosity of water, 
p' is the density of water, Pr, is the Prandtl number based on the conductivity of the 
saturated medium and the subscript zero refers to conditions at z' = 0. The non- 
dimensional configuration is shown in figure 2 (b ) .  

The associated boundary conditions can be described by 

v(z, +ye) = 0, T(z,+ye) = 1 - r ~  for -1 < z < 0, ( 5 d 4  

w,(o,y)=O, W(- ( i+ l ) , y )=O for - y e < y < y e -  (5e,f 1 
~ ( z ,  &ye) = gvw(z), T(z,  +-ye) = 1+r for -(I+Z) < z < -1, (5c,d) 

In  the region where the walls are impermeable the non-dimensional mass flux can be 

m' 
way z - 

2YxzP;. 

written as 

The quantity m' is a measure of the mass entering the fault zone a t  z = - 1. The 
problem's solution is parametrically dependent upon this quantity, which cannot be 
specified without a complete analysis of the entire circulation pattern of the water 
(including the downflow into the basement rock and the horizontal transit process 
during which the liquid is heated). From the viewpoint of the present theory m' must 
be found a posteriori from a comparison of solutions with appropriate field or experi- 
mental measurements. 

The explicit form of v,(z) is chosen to be 

V,(Z) = 4v3fk2(-Z- 1 ) [ Z + ( 1 + I ) ] ,  (7) 

in which vM, the maximum velocity, occurs at  z = zM = - (1 + 42). 
Solutions for the system (1)-(7) are sought for specified values of 7,  R, ye and M. 

From the physical viewpoint it is of interest to consider R 1 (R = 102-103) and ye< 1 
such that Ry; = O(1). In  this case Rye, which is the Rayleigh number based on the 
channel half-width, is a large quantity. 

3. Isothermal charging of the fault zone 
In the lower portion of the fault, - ( 1  + I )  < z < - 1, the boundary condition ( 5 4  

implies an isothermal flow. It follows from (1)-(3), (5c) and the appropriate scalings 
y = yejj and v = yeE that the basic system can be written as 

- 
vg+ws = 0, pu = - y;E, w = -pe+  1, 

qz, f 1) '= T v,,(z)/ye, w( - (1  +I), 5) = 0.  

If we consider the asymptotic limit ye -+ 0 with 3 and z fixed, then the basic solution is 
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The corrections to w and v are O(y,2) and O(y,3) respectively. A n  O(1) mass flux M is 
obtained if v,, = O(y,). It follows from ( 8 b )  that iv< w since jj = O(1). The axial 
velocity is essentially a slug-type flow which increases in magnitude as mass is added a t  
the boundary. As the point z = - 1 is approached from below w -+ M and v + 0. 
Formally (8) and (9) are correct only for z < - 1 because the change in boundary 
conditions at  z = - 1, described in ( 5 u - 4 ,  is associated with a weak upstream effect 
which will be considered in detail. 

4. The thermally active fault-zone flow 
It is now required to determine how the isothermal slug flow at z = - 1- is altered 

as the rising column of fluid is cooled. The fluid entering the thermally active region 
with a temperature T = 1 +I- will be cooled at the walls as a result of the boundary 
condition (5b) .  Since the tube Rayleigh number Rye is large, the thermal cooling layer 
will be small compared with ye. In the thin layer the temperature will be less than that 
in the adjacent isothermal core. It follows from (2 b)  that the buoyancy force is reduced 
and hence the fluid velocity will be less than the initial value. The core velocity must 
then increase slightly to account for the reduced mass carried in the thin thermal 
layers. In this way, the physical description of the entry-length development of the 
temperature and velocity profiles can be rationalized. 

Sufficiently far downstream, when the growing thermal wall layers fill a large 
portion of the tube, the flow configuration will be dramatically different from the 
initial conditions. The development further downstream in this channel of small 
aspect ratio involves the approach towards the fully developed solution in which the 
axial velocity is a function of only the transverse variable. 

The mathematical approach for modelling the flow is an adaptation of the ideas 
presented by Van Dyke (1970) for studying entry flow of an incompressible viscous 
fluid in a channel, a purely isothermal problem involving the development of a 
parabolic Poiseuille profile. Unlike that problem, in which the developmental aspects 
are associated with the growth of thin viscous boundary layers near the wall, the 
present consideration must be focused on the influence of the thermal properties of the 
flow. It should also be stressed that the entry region considered here involves develop- 
ment from a previously well-defined isothermal channel flow. This is in contrast to 
Van Dyke’s cascade problem, in which the appropriate upstream boundary condition 
is a uniform flow ‘far’ from the entry point. 

5. Entry flow 
The stream-function form of (1)-( 3), (5a ,  b )  and (6) can be written as 

R [ Y v ~ - Y z T v ]  = V2T, 
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Y(-l- ,y) = M y ,  T(-l- ,y) = 1+7. (14) 

Asymptotic solutions will be sought in the limit ye< 1 such that y = R*y, = O(1). 
In  the entry region, where the length scale is ye, the appropriately scaled variables 

= (1 + z)/ye, J = y/ye, iP = y/ye (15% h c )  
can be used in (lo)-( 14) to obtain 

V2T = Tc/7, 

T(Z, & 1) = 1+7-ye72, Ti(?, 2 1) = 0, (18a,b) 

(19) 

T ( Z - + - a , J ) = M J ,  T(Z-+-m,J )=  l + ~ ,  (20% b)  

M = g[F(Z, 1) - T(Z, - I)], 

where ff2 is the operator in (10) with y and z replaced by barred quantities. In the limit 
ye + 0, (17) reduces to a statement that the convective operator is zero. Since the 
velocity is non-zero, it  follows that T z 1 + T ,  which is clearly representative of the 
adiabatic core away from the walls. To a first approximation (16) reduces to a Laplace 
equation for T which must satisfy (18b) and (20a). Thus the slug flow prevails; 
F z Mjj. These solutions are not valid adjacent to the wall, where a boundary layer 
must exist. The fuller core expansions can be written as 

T N Mjj+y,9T1(Z,jj)+ ..., 

T N 1+7+Eh'T(ye). (22) 

The corrections in (21) and (22) result from thermal-boundary-layer effects which are 
to be discussed. The term EST(ye) in (22) denotes terms which are exponentially small 
with respect to the parameter. 

The thermal-boundary-layer transverse variable, found by rescaling (17) such that 
there is an inherent balance between conduction and convection in the energy equation 
when ye -+ 0, has the form 

near the wall ij = 1. The geometric configuration is shown in figure 3. Asymptotic 
expansions can be written as 

(23) 

T N 1+7-yl,H(Z, Y ) .  (24) 

y = (1-Y)/Y: 

T - M(1-9;  Y)+y;F(Z, Y), 

It is observed that the O(y!) term in (23) represents a weak correction to the core stream 
function. The disturbance is small because the no-slip condition cannot be considered 
within the context of the porous-media equations. In (24) the correction represents 
the basic cooled thermal boundary layer. In the lowest-order approximation the 
equations for F and H ,  as derived from (16), (17) and (22)-(24), can be written as 

Fopp = HOp/7, aHoz = Hopp, a = y 2 M .  (25% b,  c) 
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FIGURE 3. The entry-flow plane and variables. 

The conditions to be met by the solutions, obtained from (12 )  and by constructing 
matching criteria with the core, have the form 

, Fo$, 0) = 0) F0& Y -+ co) = 0) 

H0(Z, 0) = 75, H0(5) Y -+ 00) = 0. 

(26% b )  

(26C) 4 
In terms of classical functions (Abramowitz & Stegun 1965, p. 297) the solutions can 
be written as 

From (23)) (24) and (27)-(29) one may ascertain that at the wall (5 = 1) 

The initial slip velocity M is reduced with increases in 5 while the wall shear and heat 
transfer (in effect) increase. 

By considering the limit Y --f co with 2 fixed it is possible to  show that a t  the outer 
edge of the boundary layer 

~ , , = 0 [ ~ - 3 e x p ( - i T ) ] ,  

which helps to  justify (22 ) .  The same limit can be used to  show that, for the boundary 
layer a t  5 = 1) 
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which verifies (21). This means that the displacement effect of the thermally induced 
boundary layer acts on the core flow like a surface distribution of sources in a manner 
similar to  that seen in a viscous momentum boundary layer (Van Dyke 1964, p. 134, 
1970). 

If the limit Z -+ co with 7 fixed is taken in (23), (24) and (27)-(29) it is found that the 
boundary-layer expansions are invalid when Z = O( l/ye), which corresponds to 
z = O( 1) and = O( 1). In that region further development of the flow takes place. 

The core correction Tl can now be obtained from the system 

V2T1 = 0, (32) 

T&, 5 1) = k 2(~/an)t  for z > 0, (33) 

T1(z, k I )  = o for z < 0, (34) 

(35) Tl(Z -+ -00,g) = 0. 

Equation (32) is obtained from the limiting forms of (16), (17), (21) and (22). The 
effective source condition in (33) obtained from (31) is derived formally by matching 
the wall boundary layers and the core region. Equations (34) and (35) are boundary 
conditions on the flow upstream of 5 = 0 in a region of extent O(ye) measured on the 
z scale. It is to be noted that the basic charging solution described in (8a, b )  has the 

(36) 
form 

in the region O(yJ upstream of entry. The corrections to the slug flow w = M ,  v = 0 are 
smaller than the correction Tl induced by the thermal-boundary-layer phenomena. 
Hence the latter must decay for Z -+ -co. The solution to (32)-(35) describes the 
upstream influence of the thermal effects as well as the acceleration of the core for 
X > 0. For present purposes it is of interest to obtain the asymptotic form of Tl far 
downstream. A n  asymptotic analysis can be used to show that 

w = M+O($),  v = O(yZ) 

- -  42a r 8 + ~ 3 +  ...I, 
F,(X -+ co, g )  - - 

3(a77)4 
from which it follows that 

4(4, 1 - 3 y  
w(z’00,g) - M+y!- 3(an)i [ 1 + 7  +...I 

(37) 

(38) 

The first term in the correction represents the basic acceleration of the core. It may be 
observed from (38) that when the non-uniformity occurs [5 = O( l/ye)] the correctionis 
O( 1). Hence the core is substantially altered from the initial slug-flow profile. It is to 
be noted that the temperature remains isothermal because of the exponential decay 
property of the thermal boundary layer. 

6. Downstream flow 

stream variables are z and +j. If (15 b,  c) are used in (lo)-( 12) it follows that 
The non-uniformity in the entry-flow expansions implies that the appropriate down- 

?,G+ yZqZz = l’!G/r, (39: 

y2 [P, q - q T,] = TQG + y: RB, (40 

P&, f 1) = 0, q z ,  & 1) = 1 - T Z .  (41a, b 
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The initial conditions for this system, obtained by matching the downstream region 
with the asymptotic extent of the entry flow, are 

r f ( z  --f - 1+, jj) N ( 1  + 7 )  + EST(y,) .  (43) 

The fist-order approximations to 9 and r f  are described by the reduced form of 
(39)-(43) obtained from the limit ye --f 0: 

P0cc = TOG/?, (44) 

Y2 [Po6 TO8 - 9 0 B  Po7i,,l = pocg, (45) 

(46a, b)  

Y ( - l , g ) = N g ,  p o ( - l , @ =  I+?.  (47 a, b )  

Y o z ( Z ,  k 1 )  = 0, P o ( Z ,  & 1) = 1-72, 
.., 

Equations (44)-(47) represent a nonlinear parabolic system which describes the 
development of the initial profiles in (47). Although the latter equation may appear 
obvious, the entry analysis was necessary for a rigorous derivation. 

6.1. Spatial stability 

Prior to developing the full numerical solution, it is of interest to consider the possibility 
of fully developed solutions to (44)-(46). This matter is examined by assuming that far 
from the entry, in the sense that z’ 9 y:, the solutions can be represented by 

where the corrections denoted by the subscript 1 are assumed to be small with respect to 
the basic fully developed solution. It follows from (13), (15c), (44)-(46), (48) and (49) 
that the latter is described by 

Q;; = oh, - y a p  0 - - 8” 0 ,  (50a, b )  

9 0 ( 1 ) - 9 0 ( - 1 ) = 2 M ,  O0( ? 1 ) = 0 ,  (51 a, b)  

where primes denote derivatives with respect to i j .  Equation (5 la)  is a statement of 
global mass conservation which replaces the initial condition of the full parabolic 
system. The solution 

M sin yjj MY qo = siny , 8, = sin - - - ~ ~ o s ~ ~ - c o s y ~  y 

is valid for y # nn (n = 1,2 ,3 ,  ...). Axial velocity profiles w(jj)  are shown in figure 4 
for several values of y. Symmetric, purely upflow profiles appear for 0 < y < in. When 
in < y < n there are regions of downflow adjacent to the walls. When y + n-, I wI -+ 00 

while the axial velocity profile implies the existence of nearly equal upward and down- 
ward mass flux, so that the throughput remains finite. When y = n an additional 
eigenfunction cosnij appears in (52a). In  terms of the axial velocity the solution is 
composed of symmetric and antisymmetric modes each of which involve only zero 
net mass flux. These are representative of the eigenfunctions which can be derived 
for the onset of convection in the fully developed portion of the long narrow channel 
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0 

FIUURE 4. Fully developed vertical flow profiles in the slot for y = tn, in and 4n. 

by adopting the ideas of Ostrumov (1946, see Landau & Lifshitz 1959, p. 215). The 
appearance of reversed flow in the fully developed solutions for y > &r and large 
velocities for y + 7 ~ -  presents conceptual difficulties in the understanding of the 
development of the slug-flow profile at  x = - 1.  How can a flow governed by a parabolic 
system develop reversed flow Z What is the physical mechanism which generates large 
values of w ?  Are these flows physically acceptable? An answer to the last question 
can be obtained by examining the spatial stability of the fulIy developed profile. We 
ask whether small corrections to the latter, represented by Ql and O,, decay or grow 
with increasing downstream distance. 

The governing equations can be written in the form 
u 

T,QQ = O,,, YIZ(Z, & 1)  = Ol(Z, & I )  = 0, (53a, b )  

(54a, b)  yy~o~lz-Blar-e;,Qlz] = olar,, 91(z, I) = Tl(2, - 1). 
Equations ( 5 3 ~ )  and (@a) can be combined to produce a fourth-order linear partial 
differential equation for Q,. The solution which satisfies (53 b )  and (54 b )  can be written 
formally in the separable form 

where v is an odd function described by 

(cosr)viV+ (sinr)v”’+ (cosr) v”+ (sinr)v’+~[(cos2T)v’‘+ (COST) (sinr)v’+v] = 0, (56) 

Q, - e-%(a), (55) 

v ( + y ) =  ( d ” + w ‘ ) ( ~ y ) = O ,  (57a, b )  

r = yjj, 2 = yMh/siny,  0 < y < 7 ~ .  (58 a, b )  
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This is a non-self-adjoint eigenvalue problem. When 0 < y < QT the system is non- 
singular. However for Qn < y < 72 the coefficient of the highest-order derivative is zero 
somewhere in the field, rendering the problem singular. There are several properties of 
(56) which can be developed by elementary analysis. For all y and the even function 
cos r is a solution of (56) but does not satisfy all the conditions required for an eigen- 
function. When y = $T and 2 = 0 the odd function v = r cosr is an eigenfunction. It 
follows that the corresponding fully developed profile shown in figure 4 is neutrally 
stable. This is interpreted to mean, following Chen & Libby (1968), that this profile 
would not be observed in an experiment because a small disturbance from the fully 
developed profile wouId not decay in the downstream direction. 

Further properties of the eigenvalue problem can be developed for the case 2 # 0. 
A first integral of (56) can be written in the form 

v"' + vn + R[(cos r) vr  i- (sin r) v] = AA cos r, 

v'( + 7) = A .  

(59) 

(60) 

The function f = u''+v' can be used in the differentiated form of (59) to show that 

in which the integration constant A is associated with the condition 

f"+Rcosrf = -2Asinr. (61) 

Equation (57b) and the condition that v is an odd function lead to 

f (0) =f'W = 0. (62) 

The v solution can then be found in terms of quadratures off (r). If the complete 
boundary conditions in (57) and the oddness condition are to be met it is necessary that 

S,'jsin r dr = A sin y. (63) 

When A = 0, numerically obtained eigensolutions of (61) and (62) do not satisfy the 
integral condition (63). It follows that only the trivial solution f == 0 is possible. Given 
the complete set of conditions on v, this corresponds to the null result v = 0. Hence the 
case A = 0 is not physically viable. 

With the normalization A = 1, which does not affect the problem (56) and (57) 
originally formulated, two distinct cases can be examined. 

Case I: 0 < y < &r, 2 # 0, A = 1.  If (61) is multiplied by the complex conjugate 
off and the result is integrated over the field then it follows, after application of the 
conditions in (62) and (63), that 

R(s iny+~o~cosr l f ledr )  = / ' I  0 f'I2dr. 

One concludes that the eigensolutions are real and 2 > 0. 

used to show that 
Standard manipulations with (61)-(63) for any two eigenfunctions f, and f,, can be 

soy cos rf, f, dr = - sin y. 

This result combined with that in (63) implies that there can be only a single solution 
fo with no internal nodes in (0 ,y) .  Then one can adopt the argument of Ince (1956, 
p. 225) to show that the corresponding eigenvalue A,, is the smallest possible. 
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FIGURE 5. The smallest canonical eigenvalue h, &B a function of ’ y for y d +R. 

Numerical solutions to (61)-(63) with A = 1 were obtained by using a quasi- 
linearization technique (Kalaba 1963). In figure 5, the smallest eigenvalue A0 is shown 
as a function of y. It should be noted from (58b)  that h itself also becomes large when 
y< 1, which implies [see (55 ) ]  that rapid convergence to the fully developed flow is 
obtained. 

As y increases, corresponding to growth in the conventionally defined channel 
Rayleigh number Bye, the convergence rate becomes less rapid. This implies that for 
a channel of length L’ fully developed flow will not be found for sufficiently large y. 
Although not shown on figure 5, the 2, curve continues smoothly beyond y = 4.n. 
However it is no longer the smallest possible eigenvalue. In particular it should be 
recalled that when y = &r there is an eigenvalue corresponding to 2 = 0. 

Case 11: #n < y < n, 2 # 0, A = 1. Standard arguments fail in this case because 
cos r changes sign a t  r = 4n. However solutions can be constructed by using asymptotic 
techniques which have been developed for problems of turning-point type (Cole 1968, 
p. 125; O’Malley 1974, p. 168). The approach is based on the hypothesis that 2 is large 
and negative for the present range of y .  

If we assume that - 2 = c2 for e + 0 then a uniformly valid solution to (61) and (62), 
when y(4n) = O(&), is 

f N -tan r - ne-j[b(e) Ai( - P) + Gi( - P) + 1/P], 

P = d ( r  - in), 

(64) 

b(6) = tan [(2/3e) (y -  + in], (65) 

(66) 

where Ai and Gi are standard functions (Abramowitz & Stegun 1965, pp. 446-450). 
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FIGURE 6. The smallest negative canonical eigenvalue 1 as a function of y for y > in. 
---, asymptotic result; ---, numerical result. 
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The integral condition ( 6 3 )  can be evaluated to show that 

( 6 7 )  
n--1 1 + sin y 

b - - -  In 
2 1-siny' 

The asymptotic values of the integrals of A$ and Gi were found in Luke (1962, p. 140). 
It follows from the definition of e, (65 )  and ( 6 7 )  that 

The smallest negative eigenvalue, found for n = 1, is plotted in figure 6 for a range 

Numerical solutions were developed using a quasi-linearization approach where the 
initial guess is based on the analytical results in (64) - (68) .  Rapid convergence to the 
solution was obtained even for values of y away from Qn. The result for the eigenvalue 

of y.  
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appears in figure 6.  It may be observed that the analytical result, while formally valid 
for y --f in, is reasonably accurate (note the logarithmic scale for 8)  over a larger 
range of y. 

One may conclude from the results given here, (55 )  and (58) ,  that the fully developed 
profiles are not spatially stable when y 2 &r and presumably could not be observed 
in an experiment. This result is not unlike that found by Chen & Libby (1968) in their 
study of the lower-branch solutions of the Falkner-Skan equations. The reverse flow 
profiles predicted by (52a) for y > in are physically unrealistic. 

One may inquire, with reason, about the predicted flow configuration when the 
physical dimensions of the system imply that y -+ in-. A study of fully developed flow 
in a three-dimensional, long, narrow vertical slab is described in the appendix. It is 
shown that the two-dimensional flow configuration cannot exist anywhere in the 
system when y+ &T-. At that value the profound influence of natural convection 
effects in the dimension transverse to the plane we have considered causes a three- 
dimensional configuration to appear. 

6.2. Numerical results 

Numerical solutions to (44)-(47) may be obtained when 0 < y < in. The trans- 
formations 

are used in (44)-(47) to develop the canonical system 

!.P0=1-7~+7MB, qo=i@?, ~ = - 1 + M 2  (69a, b, c) 

h A 

( 7 0 4  

(70b) 

(70c, 4 

Yfp-- - 8- 
uu - II' 

A A A  A 

y2 [ Y ~ (  - i + OE) - Y~ e,] = eGG, 
~ ( 2 ,  ~fr 1)  = 1, ep, rt: 1) = 0, 
h A 

A 

Y(0, g )  = g ,  B(0, g )  = 0. (70e,f 1 
When 2 <  1, a solution can be obtained in terms of a developing boundary layer 
adjacent to the wall and an accelerating core in a manner reminiscent of Schlichting's 
(1960, p. 149) calculation for Poiseuille flow. In order to avoid resolving the boundary 
layer in the numerical computation we use a Von Mises type transformation 

A 

w / M  = & = U'c > 0 (71a,b) 

in (70). It follows that 

1 l=L&d+ 
The condition $, > 0 is satisfied if no regions of reversed flow exist in the solution. 
Equation (72b) is a first integral of the momentum equation. The unknown function 
f(2) remains to be found. Equation (72c) follows from the mass conservation condition 
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FIQURE 7 .  The ratio of the numerical value of the vertical centre-line velocity 8(0,2), to the 
fully developed value 6(0, &)f.d, as a function of y for several fixed depths in the dot. 

Because of symmetry the boundary and initial conditions associated with (72) are 
taken to  be Pi& 0) = $(a, 1) = 0, 

P ( O , $ )  = 0, 8(0,4?) = 1.  

The parabolic equation (72a) was solved by the Crank-Nicolson difference scheme 
at 2 = (n + 1) Az, with 8 evaluated a t  (n + 1) A2. This required an 

is calculated from (72b) and 

to determine 
inner iteration cycle in which (i) &+l) is obtained from (72a), in which 8 = 
(ii) f[(n+ l)A2] is then found from (72c) and (iii) 
compared with a. The cycle is continued until 

max 18-@(n+l)J/max I&(n+l)I < 10-4. 

The solution for f [(n + 1 )  A21 in (72c) was found by Newton's method withf(nA2) as 
the initial guess. With A$ = 0.025 and A2 = 0.001 the maximum number of inner 
iterations was two. The maximum number of iterations required to find f[(n + 1)  Az] 
was two. 

The program was validated in two different ways. First, an invariant solution was 
obtained when the fully developed profiles 

h 

ei.d. = $f.d. - 'OS ?/sin ( 7 3 b )  

were used as initial conditions. Then results obtained with the initial conditions 
(70e,f) were checked against the Schlichting-like asymptotic results for 2 + 0, with 
complete agreement. In  the interest of brevity these details are omitted. 

Figure 7 shows a plot of8(0,2),/8f.d.(0,2) as a function of y for different values of 
z when M = 1. At a specific value of y one can determine how close the flow is to the 
fully developed value at any value of z. For practical purposes when y 2 0.85 fully 
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developed flow is never achieved in the slot. Owing to the canonical form of t3 and the 
transformation in (69c) it  should be clear that increasing M increases the deviation 
from fully developed flow at a specific z location. For a given slot configuration if the 
tube Rayleigh number (proportional to y )  is made sufficiently large a reasonable 
approximation to fully developed flow cannot be achieved in a slot of finite length. 
For 0 < M < 1 additional parametric curves in figure 7 can be found. No new con- 
clusions concerning fully developed flow are forthcoming. 

7. Discussion and results 
Two-dimensional flow dynamics in a conceptually plausible idealized model of a 

fault zone in the earth's crust have been elucidated. It has been hypothesized that the 
fracture zone can be represented by a tall, narrow, vertical slab of saturated porous 
media of arbitrarily large extent in the third dimension. The conclusions are restricted 
in their applicability by the assumptions of (i) mass input in the basement-rock section 
alone, (ii) no mass loss from the fault zone into the intersecting sediments, (iii) a free, 
open exit at  the surface, (iv) compensating compaction and variable-viscosity effects, 
(v) the Boussinesq-type approximation for density variation, (vi) a wall temperature 
distribution increasing linearly with depth and (vii) no phase change (in situ boiling) 
of the liquid in the fault zone. None the less, the results obtained in the course of 
analysis can be used to develop, a t  the very least, a qualitative understanding of how 
liquid, heated a t  a large depth, is cooled as it rises towards the earth's surface in a 
region of relatively large vertical permeability. For the configuration examined one 
can ascertain the development of the flow pattern and temperature distribution as the 
system evolves towards the fully developed flow. It is clear that a two-dimensional 
model is not viable when the Rayleigh number based on the channel half-width, 
Rye = yR*, is sufficiently large. For instance, the theory predicts that if R = lo3, 
y = in and L' = 3 x loam, for which the fault-zone width 2yL = ZyR-*L' is about 
150 m, then two-dimensional flow will prevail with Rye = 25. However, if Zy; > 300 m, 
then y > *7r, the slab looks more like a box and three-dimensional motion is possible. 
It may be noted from figure 7 and (69c) that in the former case the flow is within 7 % of 
fully developed even for z = - 0.9 ( M  = 1) whereas if y x 4.- and Rye x 50 then even 
for z --f 0-(M = 1 )  the flow is only within 17 yo of fully developed. One may also 
observe that a two-dimensional flow configuration in a specific geological structure 
(specified y: and L') could be altered to a three-dimensional form by an increase in 
y ( =  R*yJ associated either with a rise in R caused by enhanced thermal activity 
(larger r )  at a large depth or with additional fracturing due to tectonic activity (larger 
permeability). Both types of activity in the form of magma intrusions and/or seismic 
events are known to occur in geothermally active areas. 

In figure 8 the temperature distribution with depth is characterized by the centre- 
line value T(z, 0) for several values of y when M = T = 1.  Straight-line segments of the 
curves represent the fully developed regime. The remaining portions are obtained from 
the results of numerical computation. As y is increased hotter liquid is brought up 
towards the surface. The centre-line temperature at  z = 0 is shown in figure 9 as a 
function of y .  One may note that there can be substantial enhancement of this maxi- 
mum temperature with respect to the boundary value. 
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FIUURE 8. The centre-line temperature as a function of depth in the 
fault for several values of y when M = T = 1. 
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FIGURE 9. The centre-line temperature at z = 0 as a function of y when M = 7 = 1. 

The reference conductive vertical heat flux in the fault is defined by Qk = &AT'/L', 
where A; is the thermal conductivityof the saturated medium. This quantity should be 
compared with the horizontal conductive flux through the walls into the neighbouring 
sediments, QL = - AL(aT'/ay') (2,  y:), and with the convective heat transfer up the 
fault, QL = p'CLT'w', If we define the wall Nusselt number as N, = Q&/QX then to a 

first approximation N, = (4y2MZ/nye)+ (74) 
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YeNw 

FIGURE 10. The reduced wall Nusselt number yeNw as a function of 
depth in the fault for several values of y when M = r = 1. 

in the entry region while downstream we find 

1 a8 
N, = --w(2, 1)- (2,l). 

9 e  a+ 
(75) 

When fully developed flow i s  achieved then (73a ,  b )  can be used in (75)  to show that 

In  figure 10, yeN, is plotted as a function of location in the slot. The curves were con- 
structed from a combination of (74)-(76). Numerical results were used to evaluate (75). 
Vertical portions of the curves represent the fully developed flow regime. For a given 
fault-zone (slot) configuration, denoted by ye, an increase in y is related to that in Ri. 
The most important physical variation is associated with an increase in AT' and/or k;, 
the permeability. 

Equations (74) and (75) imply that the heat transfer into the formation, arising 
from the convective flow process, is considerably larger than the vertical conductive 
flux. One would expect temperature distributions in these sediments to be controlled 
basically by heat flow from h e  neighbouring fault zone rather than by conduction 
from the basement. 

The non-dimensional convective heat flux Q;/QB = (CL/Ca) (R/T) wT implies that 
significant heat transfer in the system is associated with vertical convection. 

A typical geophysical example can be constructed by considering a fault zone 
with the dimensions 9: = 100 m and L' = 3 km in which the effective permeability 
kh = om2. A temperature difference of 300 "C is specified with a boundary tem- 
perature at  z = 0 of TA = 300 OK. Characteristic thermodynamic data based on Ti are 
used: a' = 2-3 x 10-40C-1, vh = 9.5 x 10-3cm2/s. 
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It follows that the parameters characterizing the system have the values 
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The characteristic vertical convection velocity qk x 0.62 cm/day leads to a transport 
of mass m' x 1.22 x lo6 kg/day along 1 km of the fault zone's horizontal extent when 
M = 1. The heat transfer associated with the mass transport can be evaluated from 
(74)-(76) along with the definitions of &&, &; and Qh. One finds that && = 6.5HFU 
( 1 HFU = cal/cm2 s) whereas the wall heat flux evaluated from the fully developed 
formula (76) is &; = 73 HFU. For y = 0.50 the latter should prevail in the upper 70 % 
of the fault according to the results in figure 7. The associated convective heat flux in 
the fully developed section evaluated at  the centre-line at  z = 0 is &; = 3.04 x 103HFU, 
some 470 times larger than the reference conductive heat flux. These sample values 
reinforce the notion that the convection of heated water from a large depth, even at  a 
rate of lcm/day, can transport significant quantities of mass and energy to the 
surface. 

In  a liquid-dominated geothermal system it is reasonable to expect that heated 
liquid rising in the fault zone will charge intersecting horizontal aquifers which have 
sufficient permeability. This mechanism can produce and maintain a reservoir of 
areal extent large compared with the fault-zone area itself. The heat flux through the 
surface above the fault and surrounding reservoir will be high compared with the 
background level of 1.5 x 10" cal/cm2 s (Elders et al. 1972). Measurements at  the East 
Mesa geothermal anomaly (Combs 1971) indicate that 5 x 106cal/s cross about 
110 km2. If it is assumed that the originating mechanism of that energy is convection in 
a narrow fault zone then using order-of-magnitude estimates of the ratio &;/QL 
discussed earlier one can show that the horizontal area of the fault zone required is 
only about 3 km2. Since the thermal activity of East Mesa extends along the Combs- 
Hadley fault for about 16 km this suggests an effective fault width of 200m. 

The solutions that have been developed for the stream function and temperature 
can be used in (2) to calculate the vertical pressure distribution in the system. In any 
section of the fault where the flow is nearly fully developed one can substitute (49) and 
(52) into (2) to produce the analogous pressure distribution 

The variable'p is defined in (4) as the non-dimensionalized difference between the 
actual pressure and the cold hydrostatic head pAg'z'. The first term on the right-hand 
side of (77) describes the relative reduction in hydrostatic pressure associated with a 
linearized representation of the expansion of water with increasing temperature. 
Superimposed upon the resulting warm hydrostatic head is a pressure field, associated 
with the flow dynamics, which increases linearly with depth. In dimensional terms this 
quantity can be estimated from the value of the reference pressure p& in (4e), which is 
O(l0 atm) in a typical geothermal environment if, in particular, k; = 10-vcm2. 
A measurement of the formation pressure distribution in a bore hole along with a 
temperature survey provides enough information to calculate the warm hydrostatic 
head and the net pressure difference at  any depth. A basically linear increase in the 
difference with depth would provide some verification of the model considered in the 
present work. Reliable data of this sort are not at  present available. 
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In future studies some of the restrictions mentioned above will be removed in order 
to model real geothermal systems more accurately. Perhaps the two most pressing 
points are the fault-zone charging process and loss of mass into the sedimentary 
aquifers that intersect the fault. Inclusion of the latter effect will permit a quantitative 
estimate of how the geothermal reservoir itself is supplied and maintained with hot 
water. 
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Appendix 
A fully developed solution to the three-dimensional analogue of (1)-( 3) is sought in 

the rectangle - 1 < it < 1, - 1 < < 1, where 5 = x/xe, ?j is defined in (15) and 
xe = xL/L' is the non-dimensional extent of the slot in the x' direction. On the bounding 
vertical surfaces the normal velocity vanishes and T = 1 - TZ. The statement of global 
mass conservation analogous to (6) is 

1 +1 +1 

4 -1 -1 
M =-I wdzdij .  

The problem is expressed in terms of the variables 

1 +1 +1 

4 - 1  -1 
6( & 1,jj)  = 6 ( E ,  k 1 )  = 0, M = -I I (k+6)&dg, (A5a ,b )  

where u and v are transverse velocities, k is an integration constant and E = y,/xe. 
A general solution to (A 4) and (A 5)  can be found in terms of an eigenfunction expan- 
sion. It follows from (A3) and (A5b) that when y < 7~ 

pn = [$(an+ q2+-y2]*, A,J~ = )(2n+ i ) ~ .  (A 8 )  

In order to determine the conditions for which the two-dimensional profile, considered 
previously, is a viable representation of the flow in a three-dimensional region we 
consider asymptotic forms of (A 6) and (A 7)  in the limit B + 0. 

(i) 0 < y < +7~. If $, is real and positive, then elementary asymptotics can be used 
to show that 
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The x dependence is confined to narrow boundary layers adjacent to 5 = k 1. Thus the 
two-dimensional profile represented by the first term on the right-hand side is valid 
for IS1 < 1. The associated temperature profile, like that in (52b) ,  can be found from 
(A 3), (A 9) and the asymptotic estimate k = yM/tan y + O ( E ) .  One may conclude that 
the fully developed flow in a tall, narrow, vertical slab containing a saturated porous 
medium will be basically two-dimensional if e < 1 and y < in with the exception 
of narrow boundary layers at  Z = 

(ii) y -+ Qn-. It is evident from (A 9) that the asymptotic estimate fails when Po -+ 0, 
which occurs when y -+ Qn-. In fact a careful analysis indicates that the representation 
in (A 9) is valid only when y - in B €8. In order to consider the flow when y is very close 
to in the expression y = $ 7 ~  - 8, where 8 < s2, is substituted into (A 6) and (A 7). The 
asymptotic analysis shows that the largest contribution from the first term in (A 7) is 
cancelled by the largest term arising from the first eigenvalue in the summation. It 
follows that, in the limit E -+ 0, (A 7 )  reduces to 

1. 

M = - -2+o(l) . 
Y k [ n  36 1 (A.10) 

A related cancellation process occurs in (As). When the asymptotic result and (A 10) 
are combined one finds the fully developed profile 

w N ~ n M ( l - E ~ ) C 0 s ~ n ~ + 0 ( 1 ) .  (A 11)  

We observe that the asymptotic estimate does not reduce to the two-dimensional 
profile anywhere in the rectangle. Rather one finds a parabolic distribution of the 
vertical velocity field in the x’ direction. This result rationalizes the difficulties en- 
countered with the two-dimensional spatial stability analysis in § 6.1 when y + &. 
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